Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Microb Cell Fact ; 23(1): 62, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402147

RESUMO

BACKGROUND: 1,2-propanediol (1,2-PDO) is widely used in the cosmetic, food, and drug industries with a worldwide consumption of over 1.5 million metric tons per year. Although efforts have been made to engineer microbial hosts such as Corynebacterium glutamicum to produce 1,2-PDO from renewable resources, the performance of such strains is still improvable to be competitive with existing petrochemical production routes. RESULTS: In this study, we enabled 1,2-PDO production in the genome-reduced strain C. glutamicum PC2 by introducing previously described modifications. The resulting strain showed reduced product formation but secreted 50 ± 1 mM D-lactate as byproduct. C. glutamicum PC2 lacks the D-lactate dehydrogenase which pointed to a yet unknown pathway relevant for 1,2-PDO production. Further analysis indicated that in C. glutamicum methylglyoxal, the precursor for 1,2-PDO synthesis, is detoxified with the antioxidant native mycothiol (MSH) by a glyoxalase-like system to lactoylmycothiol and converted to D-lactate which is rerouted into the central carbon metabolism at the level of pyruvate. Metabolomics of cell extracts of the empty vector-carrying wildtype, a 1,2-PDO producer and its derivative with inactive D-lactate dehydrogenase identified major mass peaks characteristic for lactoylmycothiol and its precursors MSH and glucosaminyl-myo-inositol, whereas the respective mass peaks were absent in a production strain with inactivated MSH synthesis. Deletion of mshA, encoding MSH synthase, in the 1,2-PDO producing strain C. glutamicum ΔhdpAΔldh(pEKEx3-mgsA-yqhD-gldA) improved the product yield by 56% to 0.53 ± 0.01 mM1,2-PDO mMglucose-1 which is the highest value for C. glutamicum reported so far. CONCLUSIONS: Genome reduced-strains are a useful basis to unravel metabolic constraints for strain engineering and disclosed in this study the pathway to detoxify methylglyoxal which represents a precursor for 1,2-PDO production. Subsequent inactivation of the competing pathway significantly improved the 1,2-PDO yield.


Assuntos
Corynebacterium glutamicum , Propilenoglicol , Propilenoglicóis , Propilenoglicol/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Aldeído Pirúvico/metabolismo , Lactatos/metabolismo , Engenharia Metabólica
2.
Int J Food Microbiol ; 410: 110486, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37992553

RESUMO

Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. L. monocytogenes is capable of utilizing various nutrient sources including rhamnose, a naturally occurring deoxy sugar abundant in foods. L. monocytogenes can degrade rhamnose into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulated anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartments for 1,2-propanediol utilization (pdu BMC) with concomitant production of propionate and propanol. Notably, anaerobic 1,2-propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigated the impact of B12 and BMC activation on i) aerobic and anerobic growth of L. monocytogenes on rhamnose and ii) the level of virulence. We observed B12-induced pdu BMC activation and growth stimulation only in anaerobically grown cells. Comparative Caco-2 virulence assays showed that these pdu BMC-induced cells have significantly higher translocation efficiency compared to non-induced cells (anaerobic growth without B12; aerobic growth with or without B12), while adhesion and invasion capacity is similar for all cells. Comparative proteome analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL, teichoic acid export ATP-binding protein TagH, DNA repair and protection proteins, RadA and DPS, and glutathione synthase GshAB, previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu-induced cells. Our results shed light on possible effects of B12 on L. monocytogenes competitive fitness and virulence activation when utilizing rhamnose in anaerobic conditions encountered during transmission and the human intestine.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Ramnose/metabolismo , Células CACO-2 , Propilenoglicol/metabolismo , Virulência/genética , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Listeriose/microbiologia , Vitaminas/metabolismo , Proteínas de Bactérias/genética
3.
Biotechnol Prog ; 40(1): e3411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37985220

RESUMO

To study the relationship between the yield of 1,3-propanediol (1,3-PDO) and the flux change of the Clostridium butyricum metabolic pathway, an optimized calculation method based on dynamic flux balance analysis was used by combining genome-scale flux balance analysis with a kinetic model. A more comprehensive and extensive metabolic pathway was obtained by optimization calculations. The primary extended branches include: the dihydroxyacetone node, which enters the pentose phosphate pathway; the α-oxoglutarate node, which has synthetic metabolic pathways for glutamic acid and amino acids; and the serine and homocysteine nodes, which produce cystathionine before homocysteine enters the methionine cycle pathway. According to the expanded metabolic network, the flux distribution of key nodes in the metabolic pathway and the relationship between the flux distribution ratio of nodes and the yield of 1,3-PDO were analyzed. At the dihydroxyacetone node, the flux of dihydroxyacetone converted to dihydroxyacetone phosphate was positively correlated with the yield of 1,3-PDO. As an important intermediate product, the flux change in the metabolic pathway of α-oxoglutarate reacting with amino acids to produce glutamic acid is positively correlated with the yield. When pyruvate was used as the central node to convert into lactic acid and α-oxoglutarate, the proportion of branch flux was negatively correlated with the yield of 1,3-PDO. These studies provide a theoretical basis for the optimization and further study of the metabolic pathway of C. butyricum.


Assuntos
Clostridium butyricum , Clostridium butyricum/metabolismo , Fermentação , Di-Hidroxiacetona , Ácidos Cetoglutáricos/metabolismo , Glicerol/metabolismo , Propilenoglicóis , Propilenoglicol/metabolismo , Homocisteína/metabolismo , Glutamatos/metabolismo
4.
Int J Cosmet Sci ; 46(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37699769

RESUMO

OBJECTIVE: This study aimed to assess the effect of 1,3-propanediol at different concentrations (5%, 10%, or 15%), either applied alone or in combination with butylene glycol (BG) (5%) and/or glycerol (5%), on skin hydration and skin barrier function. The measurements were conducted using capacitance to determine skin hydration and trans epidermal water loss (TEWL) rates to evaluate skin barrier function. METHODS: A total of 30 healthy female subjects participated in the study. Capacitance and TEWL measurements were conducted at multiple time points, including before application and at 15 min, 2 and 8 h after the humectants were applied to the forearms of the subjects. All the subjects provided written informed consent. RESULTS: The 1,3-propanediol in all concentrations and in all combinations (with BG and/or glycerol) increased skin hydration and improved skin barrier function 15 min, 2 and 8 h after application. Glycerol increased the hydration performance of 1,3-propanediol. The application of 1,3-propanediol at a concentration of 15%, either alone or in combination with other humectants, reduced the TEWL to a greater extent than lower concentrations of 1,3-propanediol. Furthermore, the addition of glycerol to 1,3-propanediol 15% improved the skin barrier and reduced TEWL when compared with 1,3-propanediol alone and with the combination of 1,3-propanediol + BG. CONCLUSION: The humectants significantly improved skin hydration and reduced TEWL throughout the 8-h time course. The increase in 1,3-propanediol concentration, as well as its combination with glycerol, provided a greater benefit to the skin, improving both hydration and the skin barrier function.


OBJECTIF: Cette étude visait à évaluer l'effet sur l'hydratation de la peau et la fonction de barrière cutanée du 1,3-propanediol à différentes concentrations (5 %, 10 % ou 15 %), appliqué seul ou en association avec du butylène glycol (5 %) et/ou du glycérol (5 %). Les mesures ont été effectuées à l'aide de la capacitance pour déterminer l'hydratation de la peau et les taux de perte d'eau transépidermique (Trans Epidermal Water Loss, TEWL) pour évaluer la fonction de barrière cutanée. MÉTHODES: Au total, 30 sujets de sexe féminin en bonne santé ont participé à l'étude. Les mesures de la capacitance et de la TEWL ont été effectuées à plusieurs moments, y compris avant l'application, 15 minutes, 2 heures et 8 heures après l'application des produits humectant sur les avant-bras des sujets. Tous les sujets ont fourni un consentement éclairé écrit. RÉSULTATS: Le 1,3-propanediol, à toutes les concentrations et dans toutes les associations (avec le butylène glycol et/ou le glycérol), a augmenté l'hydratation de la peau et amélioré la fonction de barrière cutanée à 15 minutes, 2 heures et 8 heures après l'application. Le glycérol a augmenté les performances d'hydratation du 1,3-propanediol. L'application de 1,3-propanediol à une concentration de 15 %, seul ou en association avec d'autres produits humectant, a réduit la TEWL dans une plus grande mesure que des concentrations inférieures de 1,3-propanediol. En outre, l'ajout de glycérol au 1,3-propanediol 15 % a amélioré la barrière cutanée et réduit la TEWL par rapport au 1,3-propanediol seul et à l'association 1,3-propanediol + butylène glycol. CONCLUSION: Les produits humectant ont significativement amélioré l'hydratation de la peau et réduit la TEWL tout au long des 8 heures. L'augmentation de la concentration de 1,3-propanediol, ainsi que son association avec le glycérol, ont apporté un plus grand bénéfice à la peau, améliorant à la fois l'hydratation et la fonction de barrière cutanée.


Assuntos
Glicerol , Higroscópicos , Propilenoglicóis , Feminino , Humanos , Glicerol/farmacologia , Glicerol/metabolismo , Higroscópicos/farmacologia , Pele , Água/metabolismo , Propilenoglicol/farmacologia , Propilenoglicol/metabolismo , Butileno Glicóis/metabolismo , Butileno Glicóis/farmacologia , Perda Insensível de Água
5.
ACS Nano ; 17(16): 15751-15762, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552700

RESUMO

An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.


Assuntos
Proteínas de Bactérias , Simulação de Dinâmica Molecular , Proteínas de Bactérias/metabolismo , Propilenoglicol/química , Propilenoglicol/metabolismo , Organelas/metabolismo
6.
Bioprocess Biosyst Eng ; 46(9): 1319-1330, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37403004

RESUMO

Although 1,3-propanediol (1,3-PD) is usually considered an anaerobic fermentation product from glycerol by Klebsiella pneumoniae, microaerobic conditions proved to be more conducive to 1,3-PD production. In this study, a genome-scale metabolic model (GSMM) specific to K. pneumoniae KG2, a high 1.3-PD producer, was constructed. The iZY1242 model contains 2090 reactions, 1242 genes and 1433 metabolites. The model was not only able to accurately characterise cell growth, but also accurately simulate the fed-batch 1,3-PD fermentation process. Flux balance analyses by iZY1242 was performed to dissect the mechanism of stimulated 1,3-PD production under microaerobic conditions, and the maximum yield of 1,3-PD on glycerol was 0.83 mol/mol under optimal microaerobic conditions. Combined with experimental data, the iZY1242 model is a useful tool for establishing the best conditions for microaeration fermentation to produce 1,3-PD from glycerol in K. pneumoniae.


Assuntos
Glicerol , Klebsiella pneumoniae , Fermentação , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Propilenoglicol/metabolismo
7.
ACS Synth Biol ; 12(7): 2083-2093, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37316976

RESUMO

1,3-Propanediol (1,3-PDO), an important dihydric alcohol, is widely used in textiles, resins, and pharmaceuticals. More importantly, it can be used as a monomer in the synthesis of polytrimethylene terephthalate (PTT). In this study, a new biosynthetic pathway is proposed to produce 1,3-PDO using glucose as a substrate and l-aspartate as a precursor without the addition of expensive vitamin B12. We introduced a 3-HP synthesis module derived from l-aspartate and a 1,3-PDO synthesis module to achieve the de novo biosynthesis. The following strategies were then pursued that included screening key enzymes, optimizing the transcription and translation levels, enhancing the precursor supply of l-aspartate and oxaloacetate, weakening the tricarboxylic acid (TCA) cycle, and blocking competitive pathways. We also used transcriptomic methods to analyze the different gene expression levels. Finally, an engineered Escherichia coli strain produced 6.41 g/L 1,3-PDO with a yield of 0.51 mol/mol glucose in a shake flask and 11.21 g/L in fed-batch fermentation. This study provides a new pathway for production of 1,3-PDO.


Assuntos
Escherichia coli , Glucose , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Ácido Aspártico/metabolismo , Propilenoglicóis/metabolismo , Propilenoglicol/metabolismo , Fermentação , Engenharia Metabólica
8.
Appl Microbiol Biotechnol ; 107(14): 4581-4591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249589

RESUMO

The threat of global plastic waste accumulation has spurred the exploration of plastics derived from biological sources. A well-known example is polyester made of 1,3-propanediol (1,3-PDO). However, there is no known pathway to assimilate 1,3-PDO into the central carbon metabolism, posing a potential challenge to upcycling such plastic wastes. Here, we proposed that the 1,3-PDO assimilation pathway could pass through malonate semialdehyde (MSA) as an intermediate. Since MSA is a toxic aldehyde, ß-alanine was chosen as a surrogate substrate in this study to construct the lower part of the proposed pathway. To this end, we successfully engineered E. coli MG1655 to assimilate ß-alanine as the major carbon source. ß-alanine could be easily converted into MSA using a ß-alanine/pyruvate transaminase from Pseudomonas aeruginosa (PaBapt). However, the subsequent step to generate acetyl-CoA from MSA was unknown. After a series of phenotype screenings, adaptive laboratory evolution and transcriptomic analysis, two CoA-acylating MSA dehydrogenases from Vibrio natriegens (VnMmsD), were found to be able to complete the metabolic pathway. Optical density at 600 nm (OD600) of the resulting strain E. coli BA02 could reach 4.5 after 96 h. Two approaches were subsequently used to improve its performance. First, PaBapt and both VnMmsDs were expressed from a single plasmid to mitigate antibiotic stress. Second, a native 3-hydroxy acid dehydrogenase (EcYdfG) was disrupted to address the carbon loss to 3-hydroxypropionate (3-HP) production from MSA. OD600 of the best-performing strain E. coli BA07∆ could reach 6 within 24 h using 5 g/L ß-alanine. The construction of E. coli BA07∆ lays a solid foundation to establishing a 1,3-PDO assimilation pathway. KEYPOINTS: • This study demonstrates the implementation of a metabolic pathway to assimilate ß-alanine as the major carbon source in E. coli MG1655. • Two V. natriegens CoA-acylating methyl malonate semialdehyde dehydrogenases were used to complete the pathway in E. coli BA02. • The construction of E. coli BA02 also revealed the plasmid fusion event between two plasmids with the same replication origin.


Assuntos
Escherichia coli , Propilenoglicol , Escherichia coli/genética , Escherichia coli/metabolismo , Propilenoglicol/metabolismo , Oxirredutases/metabolismo , beta-Alanina/metabolismo , Plásticos/metabolismo , Engenharia Metabólica/métodos
9.
Biotechnol Adv ; 66: 108177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209955

RESUMO

Global efforts towards decarbonization, environmental sustainability, and a growing impetus for exploiting renewable resources such as biomass have spurred the growth and usage of bio-based chemicals and fuels. In light of such developments, the biodiesel industry will likely flourish, as the transport sector is taking several initiatives to attain carbon-neutral mobility. However, this industry would inevitably generate glycerol as an abundant waste by-product. Despite being a renewable organic carbon source and assimilated by several prokaryotes, presently realizing glycerol-based biorefinery is a distant reality. Among several platform chemicals such as ethanol, lactic acid, succinic acid, 2, 3-butanediol etc., 1, 3-propanediol (1, 3-PDO) is the only chemical naturally produced by fermentation, with glycerol as a native substrate. The recent commercialization of glycerol-based 1, 3-PDO by Metabolic Explorer, France, has revived research interests in developing alternate cost-competitive, scalable and marketable bioprocesses. The current review outlines natural glycerol assimilating and 1, 3-PDO-producing microbes, their metabolic pathways, and associated genes. Later, technical barriers are carefully examined, such as the direct use of industrial glycerol as input material and genetic and metabolic issues related to microbes alleviating their industrial use. Biotechnological interventions exploited in the past five years, which can substantially circumvent these challenges, such as microbial bioprospecting, mutagenesis, metabolic, evolutionary and bioprocess engineering, including their combinations, are discussed in detail. The concluding section sheds light on some of the emerging and most promising breakthroughs which have resulted in evolving new, efficient, and robust microbial cell factories and/or bioprocesses for glycerol-based 1, 3-PDO production.


Assuntos
Glicerol , Propilenoglicóis , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Propilenoglicol/metabolismo , Biotecnologia , Fermentação
10.
Indian J Ophthalmol ; 71(4): 1582-1586, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37026305

RESUMO

Purpose: Ocular surface discomfort and dry eye disease are caused by a dysfunctional tear film. The efficacy of lubricating eye drops on the human eye is known, but the compositions may show differential effects on rescuing the tear film. Mucins form a critical layer of the tear film, a reduction of which may be causative for ocular surface conditions. Therefore, it is essential to develop relevant human-derived models to test mucin production. Methods: Human corneoscleral rims were obtained from a healthy donor (n = 8) post-corneal keratoplasty and cultured in DMEM/F12 media. Hyperosmolar stress mimicking dry eye disease was induced by exposing the corneoscleral rim tissues to +200 mOsml NaCl-containing media. The corneoscleral rims were treated with polyethylene glycol-propylene glycol (PEG-PG)-based topical formulation. Gene expression analysis was performed for NFAT5, MUC5AC, and MUC16. Secreted mucins were measured by enzyme-linked immunosorbent assay (ELISA) (Elabscience, Houston, TX, USA) for MUC5AC and MUC16. Results: The corneoscleral rims responded to hyperosmolar stress by upregulating NFAT5, a marker for increased osmolarity, as observed in the case of dry eye disease. The expression of MUC5AC and MUC16 was reduced upon an increase in hyperosmotic stress. The corneoscleral rim tissues showed induction of MUC5AC and MUC16 expression upon treatment with PEG-PG topical formulation but did not show significant changes in the presence of hyperosmolar treatments. Conclusion: Our findings showed that PEG-PG-based topical formulation slightly alleviated hyperosmolar stress-induced decrease in MUC5AC and MUC16 gene expression that is encountered in DED.


Assuntos
Síndromes do Olho Seco , Mucinas , Humanos , Mucinas/metabolismo , Propilenoglicol/efeitos adversos , Propilenoglicol/metabolismo , Polietilenoglicóis/farmacologia , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/tratamento farmacológico , Antígeno Ca-125/análise , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Lágrimas/metabolismo
11.
Int J Pharm ; 635: 122692, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36758884

RESUMO

For permeation studies that use excised skin, experimental data may show variability associated with the use of biological tissues. As a consequence, achieving reproducible results and data interpretation may be challenging. The skin parallel artificial membrane permeability assay (skin PAMPA) model has been proposed as a high-throughput tool for predicting skin permeation of chemicals. A number of skin cleansing wipe formulations for the diaper area of infants contain 2-phenoxyethanol (PE) as a preservative and cetylpyridinium chloride (CPC) as a surfactant with antimicrobial activity. However, information regarding cutaneous absorption of PE and CPC in the scientific literatures is remarkably limited. The main aim of the present study was to assess the suitability of the skin PAMPA model for prediction of skin permeation of PE. A secondary aim was to investigate the influence of CPC on the dermal absorption of PE. PE (1 % w/w) was prepared in two vehicles, namely propylene glycol (PG) and water-PG (WP). Permeability of PE was investigated in vitro using the skin PAMPA membrane, porcine skin and human skin under finite dose conditions. The highest permeation of PE was observed for the water-PG preparation with 0.2 % w/w of CPC. This finding was consistently observed in the skin PAMPA model and in Franz cell studies using porcine skin and human skin. Permeation of CPC was not detected in the three permeation models. However, permeation of PE increased significantly (p < 0.05) in the presence of CPC compared with formulations without CPC. When comparing the skin PAMPA data and the mammalian skin data for the cumulative amount of PE permeated, the r2 values for PAMPA-porcine skin and PAMPA-human skin were 0.84 and 0.89, respectively. The findings in this study demonstrate the capability of the skin PAMPA model to differentiate between various doses and formulations and are encouraging for further applications of this model as a high throughput screening tool in topical formulation development.


Assuntos
Membranas Artificiais , Absorção Cutânea , Suínos , Animais , Humanos , Administração Cutânea , Pele/metabolismo , Propilenoglicol/metabolismo , Permeabilidade , Água/metabolismo , Mamíferos
12.
Sci Rep ; 13(1): 2394, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765076

RESUMO

Cocultures of engineered thermophilic bacteria can ferment lignocellulose without costly pretreatment or added enzymes, an ability that can be exploited for low cost biofuel production from renewable feedstocks. The hemicellulose-fermenting species Thermoanaerobacterium thermosaccharolyticum was engineered for high ethanol yield, but we found that the strains switched from growth-coupled production of ethanol to growth uncoupled production of acetate and 1,2-propanediol upon growth cessation, producing up to 6.7 g/L 1,2-propanediol from 60 g/L cellobiose. The unique capability of this species to make 1,2-propanediol from sugars was described decades ago, but the genes responsible were not identified. Here we deleted genes encoding methylglyoxal reductase, methylglyoxal synthase and glycerol dehydrogenase. Deletion of the latter two genes eliminated propanediol production. To understand how carbon flux is redirected in this species, we hypothesized that high ATP levels during growth cessation downregulate the activity of alcohol and aldehyde dehydrogenase activities. Measurements with cell free extracts show approximately twofold and tenfold inhibition of these activities by 10 mM ATP, supporting the hypothesized mechanism of metabolic redirection. This result may have implications for efforts to direct and maximize flux through alcohol dehydrogenase in other species.


Assuntos
Etanol , Propilenoglicol , Propilenoglicol/metabolismo , Etanol/metabolismo , Propilenoglicóis , Trifosfato de Adenosina/metabolismo , Fermentação
13.
J Pharm Sci ; 112(1): 230-236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181874

RESUMO

The present study assessed the effect of retention on ex vivo skin and in vivo scalp penetration of radiolabeled minoxidil formulations (5% w/v). Minoxidil was radiolabeled with technetium (99mTc) with an efficiency of 99.1% using 0.2% stannous chloride as reducing agent at pH 6 and incubation temperature of 40 °C. Three different 99mTc-minoxidil formulations were prepared using aqueous ethanolic solution as vehicle. Formulation A contains 99mTc-minoxidil dissolved in vehicle, formulation B contains 10% propylene glycol (PG) and formulation C contains 10% hydroxypropyl cellulose (HPC), in addition. Results showed that addition of HPC resulted in enhanced viscosity (400 mPa.s) and significantly higher ex vivo retention (p < 0.05) and permeation (0.75±0.12%, 8 h). PG does not improve the permeation and the results (0.44±0.05%, 8 h) were not significantly different from vehicle alone (0.40±0.05%, 8 h). The results of the in vivo human scalp studies corroborated with the ex vivo results and addition of hydroxypropyl cellulose (HPH) showed significantly higher (p < 0.05) scalp retention. Post 8 h application, scalp penetration in group treated with formulation C was nearly 2.8-fold and 2.2-fold higher than those treated with formulation A and B, respectively. Further, absence of minoxidil in systemic circulation during study duration indicates safety. In conclusion, our results showed that increasing contact time of minoxidil with scalp by modifying viscosity results in reduced frequency of application and improved efficacy.


Assuntos
Minoxidil , Couro Cabeludo , Humanos , Absorção Cutânea , Pele/metabolismo , Excipientes/metabolismo , Administração Tópica , Propilenoglicol/metabolismo , Alopecia/tratamento farmacológico , Alopecia/metabolismo
14.
Bioresour Technol ; 369: 128438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470488

RESUMO

3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) are value-added chemicals with versatile applications in the chemical, pharmaceutical, and food industries. Nevertheless, sustainable production of 3-HP and 1,3-PDO is often limited by the lack of efficient strains and suitable fermentation configurations. Herein, attempts have been made to improve the co-production of both metabolites through metabolic engineering of Escherichia coli and process optimization. First, the 3-HP and 1,3-PDO co-biosynthetic pathways were recruited and optimized in E. coli, followed by coupling the pathways to the transhydrogenase-mediated cofactor regeneration systems that increased cofactor availability and product synthesis. Next, pathway rebalancing and block of by-product formation significantly improved 3-HP and 1,3-PDO net titer. Subsequently, glycerol flux toward 3-HP and 1,3-PDO synthesis was maximized by removing metabolic repression and fine-tuning the glycerol oxidation pathway. Lastly, the combined fermentation process optimization and two-stage pH-controlled fed-batch fermentation co-produced 140.50 g/L 3-HP and 1,3-PDO, with 0.85 mol/mol net yield.


Assuntos
Glicerol , Engenharia Metabólica , Glicerol/metabolismo , Escherichia coli/metabolismo , Propilenoglicóis/metabolismo , Fermentação , Propilenoglicol/metabolismo
15.
J Agric Food Chem ; 70(51): 16263-16272, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36511719

RESUMO

Bio-based propionate attracts increasing attention owing to its green nature and specific food additive market. To date, the time-consuming and costly fermentation process by strict anaerobes makes propionate production not ideal. In this study, we designed a new route for propionate production, in which 1,2-propanediol was first dehydrated to propionaldehyde and then to propionate by taking advantage of the robust oxidization capacity of the Pseudomonas putida KT2440 strain. The high atom economy (0.97 g/g) in this proposed pathway is more advantageous than the previous l-threonine-derived route (0.62 g/g). The molecular mechanism of the extraordinary oxidation capacity of P. putida KT2440 was first deciphered. The propionate production was realized in P. putida KT2440 by screening suitable glycerol dehydratases and optimizing the expression to eliminate the formation of 1-propanol and the accumulation of the intermediate propionaldehyde. The engineered strain produced propionate with a molar conversion rate of >99% from 1,2-propanediol. A high titer of 46.5 g/L pure propionic acid with a productivity of 1.55 g/L/h and a mass yield of 0.96 g/g was achieved in fed-batch biotransformation. Thus, this study provides another idea for the production of high-purity bio-based propionate from renewable materials with high atom economy.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Propilenoglicol/metabolismo , Propionatos/metabolismo , Estresse Oxidativo
16.
Bioresour Technol ; 365: 128172, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279980

RESUMO

Methanotrophic bacteria are attractive hosts for mining metabolic pathways of C1 assimilation to produce value-added products. Herein, the type I methanotroph Methylotuvimicrobium alcaliphilum 20Z was employed to explore the carbon flux from methane and methanol via the EMP pathway to produce 1,2-propanediol (1,2-PDO). The production of 1,2-PDO on methane was found to be mainly restricted by the lower carbon flux toward the EMP pathway. The co-utilization of C1 substrates and glycerol (C3) could contribute to enhance 1,2-PDO. Lactate was co-produced in much higher amounts than 1,2-PDO. This unexpected product was probably derived from lactaldehyde by inherent aldehyde dehydrogenases. The 1,2-PDO production without increased accumulation of lactate was observed via establishing the acetol-based pathway by propane utilization with the overexpression of pmoD. This is the first study to provide experimental insights into the operation of metabolic routes for 1,2-PDO and lactate co-production from C1 and C3 compounds in methanotrophs.


Assuntos
Ácido Láctico , Propilenoglicol , Propilenoglicol/metabolismo , Propilenoglicóis/metabolismo , Metano/metabolismo , Glicerol/metabolismo
17.
Int J Food Microbiol ; 383: 109938, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36202011

RESUMO

Fungal spoilage limits the shelf life of fermented dairy products. To address the problem, this study explores the potential of lactic acid bacteria as antifungal adjunct cultures in dairy matrices. Strains of lactic acid bacteria (113) representing 19 species were screened for their activity against Penicillium caseifulvum, Aspergillus clavatus and Mucor racemosus in modified MRS medium, milk, and yogurt. Strains of Lactiplantibacillus plantarum, Furfurilactobacillus milii, and Lentilactobacillus parabuchneri inhibited the growth of mycelial fungi. The inhibitory effects of lactic acid bacteria against yeasts were also determined in yogurt with Candida sake, Saccharomyces bayanus, and Torulaspora delbrueckii as challenge strains. The inhibition of yeasts by lactic acid bacteria was strain-specific and unrelated to the activity towards mycelial fungi. Organic acids and hydroxy fatty acids were quantified by liquid chromatograph coupled with refractive index detector and tandem mass spectrometry, respectively. Principal component analysis indicated 10-OH 18: 1 fatty acids and acetate are the main antifungal metabolites and explained over 50 % of the antifungal activity. The correlation analysis of metabolites and mold-free shelf life of milk and yogurt confirmed the role of these compounds. The genomic study analysed genes related to the production of major antifungal metabolites and predicted the formation of 1,2-propanediol and acetate but not of hydroxy unsaturated fatty acids. The findings provide new perspectives on the selection of antifungal strains, the characterization of antifungal metabolites and the exploration of antifungal mechanisms among different species.


Assuntos
Lactobacillales , Lactobacillales/metabolismo , Antifúngicos/farmacologia , Fermentação , Propilenoglicol/metabolismo , Lactobacillaceae/metabolismo , Leveduras/metabolismo , Acetatos/metabolismo , Ácidos Graxos/metabolismo
18.
Microb Cell Fact ; 21(1): 204, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207743

RESUMO

BACKGROUND: Saccharomyces boulardii is a probiotic yeast that exhibits antimicrobial and anti-toxin activities. Although S. boulardii has been clinically used for decades to treat gastrointestinal disorders, several studies have reported weak or no beneficial effects of S. boulardii administration in some cases. These conflicting results of S. boulardii efficacity may be due to nutrient deficiencies in the intestine that make it difficult for S. boulardii to maintain its metabolic activity. RESULTS: To enable S. boulardii to overcome any nutritional deficiencies in the intestine, we constructed a S. boulardii strain that could metabolize L-fucose, a major component of mucin in the gut epithelium. The fucU, fucI, fucK, and fucA from Escherichia coli and HXT4 from S. cerevisiae were overexpressed in S. boulardii. The engineered S. boulardii metabolized L-fucose and produced 1,2-propanediol under aerobic and anaerobic conditions. It also produced large amounts of 1,2-propanediol under strict anaerobic conditions. An in silico genome-scale metabolic model analysis was performed to simulate the growth of S. boulardii on L-fucose, and elementary flux modes were calculated to identify critical metabolic reactions for assimilating L-fucose. As a result, we found that the engineered S. boulardii consumes L-fucose via (S)-lactaldehyde-(S)-lactate-pyruvate pathway, which is highly oxygen dependent. CONCLUSION: To the best of our knowledge, this is the first study in which S. cerevisiae and S. boulardii strains capable of metabolizing L-fucose have been constructed. This strategy could be used to enhance the metabolic activity of S. boulardii and other probiotic microorganisms in the gut.


Assuntos
Probióticos , Saccharomyces boulardii , Animais , Escherichia coli , Fucose/metabolismo , Lactatos/metabolismo , Mamíferos , Análise do Fluxo Metabólico , Mucinas/metabolismo , Oxigênio/metabolismo , Probióticos/metabolismo , Propilenoglicol/metabolismo , Piruvatos/metabolismo , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Microb Pathog ; 171: 105725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007847

RESUMO

Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (S2O32-) converting it into tetrathionate (S4O62-), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis. Therefore, we sought to compare in this study, whether Salmonella Heidelberg strains lacking the ttrA, ttrApduA, and ttrACBSR genes experience a disadvantage during cecal colonization in broiler chicks. In contrast to expectations, we found that the gene loss in S. Heidelberg potentially confers an increase in fitness in the chicken infection model. These data argue that S. Heidelberg may trigger an alternative pathway involving the use of an alternative electron acceptor, conferring a growth advantage for S. Heidelberg in chicks.


Assuntos
Galinhas , Salmonelose Animal , Animais , Galinhas/metabolismo , Propilenoglicol/metabolismo , Salmonella , Salmonella typhimurium , Tiossulfatos
20.
Nucleic Acids Res ; 50(19): e113, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36029110

RESUMO

Encapsulation of a selected DNA molecule in a cell has important implications for bionanotechnology. Non-viral proteins that can be used as nucleic acid containers include proteinaceous subcellular bacterial microcompartments (MCPs) that self-assemble into a selectively permeable protein shell containing an enzymatic core. Here, we adapted a propanediol utilization (Pdu) MCP into a synthetic protein cage to package a specified DNA segment in vivo, thereby enabling subsequent affinity purification. To this end, we engineered the LacI transcription repressor to be routed, together with target DNA, into the lumen of a Strep-tagged Pdu shell. Sequencing of extracted DNA from the affinity-isolated MCPs shows that our strategy results in packaging of a DNA segment carrying multiple LacI binding sites, but not the flanking regions. Furthermore, we used LacI to drive the encapsulation of a DNA segment containing operators for LacI and for a second transcription factor.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/genética , Propilenoglicol/química , Propilenoglicol/metabolismo , DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...